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A two-stage variant of the cut-and-project method is presented, in which a

periodic structure is cut and projected in a high-dimensional space onto three-

dimensional physical space so that a second cut and projection onto a plane

yields a quasiperiodic structure. The method is applied to the cases of octagonal,

dodecagonal and pentagonal/decagonal symmetry. The focus is on the three-

dimensional intermediate hybrid structures that are partly quasiperiodic and

partly periodic. The method can be generalized to other symmetries as well as to

include more intermediate steps.

1. Introduction

The term ‘quasicrystal’ was originally coined to denote in

general a quasiperiodic crystalline structure as distinct from a

periodic one. Yet the term is mostly restricted to mean an alloy

with a ‘non-crystallographic’ symmetry, specifically octagonal,

decagonal (including pentagonal), dodecagonal or icosahe-

dral. Only the latter is genuinely quasiperiodic in all three

dimensions of physical space. The others are, in fact, consid-

ered to be two-dimensional, the third dimension being treated

separately. Such an interpretation, while satisfactory for most

practical purposes, is, nevertheless, misleading for a number of

reasons. In the first place, a mathematical quasicrystal, that is a

quasiperiodic structure, might display any kind of point

symmetry, unless restricted, say, by a ‘quasicrystallographic

lemma’ to be associated only with quadratic irrationals.

Secondly, crystallographic point symmetry does not necess-

arily imply periodicity. Rather, it turns out that, in the generic

case, quasiperiodic structures display crystallographic

symmetries while the non-crystallographic ones, although

being the most interesting ones, are the rare exceptions. A

third objection might perhaps often be irrelevant but is central

for this study. It is quite obvious that in a real physical

‘two-dimensional’ quasicrystal the structure along the third

dimension is intimately connected to that of the quasiperiodic

planes.

An important subclass of quasiperiodic structures, if not the

most important one from a practical point of view, is that of

the cut-and-project (alias model) sets. Hence, it naturally

comes to one’s mind to consider structures gained by projec-

tion of a periodic structure in some high-dimensional space

onto three-dimensional physical space such that a further

projection onto a plane yields the known two-dimensional

quasicrystals. This was the aim of this work. We call our

procedure the ‘two-stage cut-and-project method’. Previously,

we have carried it out in one instance each of the dodecagonal

(Ben-Abraham et al., 2004) and octagonal cases (Ben-

Abraham, 2004). Our new contribution concerns another,

perhaps more interesting, twelvefold case and a new look at

the ‘traditional’ fivefold case, which, of course, includes the

tenfold case as well.

The rest of this paper is organized as follows. In x2, we

briefly describe the canonical as well as the two-stage cut-and-

project scheme. xx3 and 4 are concise reminders of the earlier

octagonal and dodecagonal versions. We present our new

results in xx5 through 8. In x5, we apply our method to an

improved dodecagonal version, in xx6 to 8, we revisit the

pentagonal/decagonal case. We conclude with some remarks

on the relevance of our findings.

2. Two-stage cut-and-project scheme

For a thorough treatment of the cut-and-project scheme, we

refer to Moody (1997). Somewhat more popular but still

rigorous introductions can be found in the books by Janot

(1994) and Senechal (1995). For our purposes, we restrict

ourselves to a drastically limited version. We consider a lattice

LD in a real space of D > 3 dimensions RD ¼ Rd
j j � Rc

?, where

Rd
j j is a real space of d � 3 dimensions, called the parallel,

physical or direct space and Rc
?, called the perpendicular,

internal or dual space, is a real space of dimension c ¼ D� d,

c being the codimension of d. We let in turn Rd
j j be

Rd
j j ¼ R� � R� , where d ¼ �þ �; usually we shall have d ¼ 3,

� ¼ 2, � ¼ 1. We project LD orthogonally onto Rd
j j. This,

however, would, in general, produce a dense set. Therefore we

select a fundamental region (unit cell) in RD and project it

onto Rc
?. This projection, W, is called the acceptance domain

or window of the scheme. Eventually, we project onto Rd
j j only

those points of LD which project into W in Rc
?. This is the

canonical cut-and-project scheme. Our twist is that we repeat

the procedure with R� and R� playing the role of parallel and



perpendicular space, respectively. Thus we arrive at the final

projection in two stages. Hence, we call our method the two-

stage cut-and-project scheme.

3. Octagonal structure

The simplest example seems to be the octagonal case (Ben-

Abraham, 2004). We cut and project the four-dimensional

simple cubic lattice represented as ð2Zþ 1Þ4 onto R3
j j. The

window is either the half-open interval

W :¼ �ð1þ 1=21=2
Þ;þð1þ 1=21=2

Þ;þð1þ 1=21=2
Þ

� �
� R1

?

ð1Þ

or

W 0 :¼ �ð1þ 1=21=2Þ;þð1þ 1=21=2Þ
� �

� R1
?: ð10Þ

The central unit cell C is a 4-cube spanned by the vectors

h1111i, i.e. the vector [1111] and all vectors symmetrically

equivalent to it. The convex hull of its projection into R3
j j is a

hexagonal prism segment C3. Its 12 outer vertices belong to

two types, A and B; referred to a Cartesian orthogonal system

(Oxyz) they are

A : �1=21=2;�21=2;�1;

B : � 1þ 1=21=2
� �

; 0;�1:
ð2Þ

The two bases of C3 contain two more vertices each:

C : �ð1� 1=21=2
Þ; 0;�1;

C0 : þð1� 1=21=2Þ; 0;�1:
ð3Þ

In the resulting structure, only one of the two points C and C0

is realized depending on which end of the window, W or W 0, is

closed. The alternation between C and C0 offers the possibility

of flipping and hence of phasons.

The resulting structure is quasiperiodic in the x direction (in

Fig. 1 along C0B, also identical to �) with quasiperiods (i.e.

characteristic distances between adjacent points) 1 and 21=2. It

is periodic in the y direction (in Fig. 1 along AA within the

basal plane) with period 2 and in the z direction (in Fig. 1

along the vertical BB) with period 21=2. Part of the basal plane

(xy) is shown in Fig. 2.

The directions � and � lie in the (yz) plane inclined to the z

direction by � 45�.

A second cut and orthogonal projection along either of

these directions (see Fig. 1) eventually produces the well

known octagonal Ammann–Beenker tiling.

4. Pseudododecagonal structure

This structure has been described in detail by Ben-Abraham et

al. (2004). We cut and project the six-dimensional simple cubic

lattice represented as ð2Zþ 1Þ6 onto R3
j j spanned on the six-

dimensional orthogonal basis vectors

a1 ¼
1
2 2; 31=2;�1;�31=2;�1; 0
� �

;

a2 ¼
1
2 0; 1; 31=2; 1;�31=2;�2
� �

;

a3 ¼ 1;�1; 1;�1; 1;�1½ �:

ð4Þ

The perpendicular space R3
? is spanned on the six-dimensional

orthogonal basis vectors

a4 ¼
1
2 �31=2; 2; 0;�1; 31=2;�1
� �

;

a5 ¼
1
2 1; 0;�2; 31=2; 1;� 31=2
� �

;

a6 ¼ 1; 1; 1; 1; 1; 1½ �:

ð5Þ

The corresponding normalized unit vectors are

ek ¼
ak

31=2
; k ¼ 1; 2; 4; 5;

ek ¼
ak

61=2
; k ¼ 3; 6:

ð6Þ

The central unit cell C is a 6-cube spanned by the vectors

h111111i. The convex hull of its projection into R3
j j is a tri-

acontahedron T||. Its two-dimensional facets are squares and

two kinds of rhombi; its symmetry is �33m. The window W is, of

course, the projection of C into R3
?. Its convex hull is again a

triacontahedron T? congruent to T||.
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Figure 1
Cavalier perspective of the hexagonal prism segment C;3 – the three-
dimensional projection of the central unit cell C.

Figure 2
Part of the basal plane (xy) quasiperiodic in the horizontal x direction and
periodic in the vertical y direction.



The product is a three-dimensional crystal structure peri-

odic in one direction (say z) and quasiperiodic in the basal

planes (xy) perpendicular to it. It is a layer structure formed

by periodic repetition of six plane layers denoted by

A0A1A2A3
�AA2

�AA1. Layers of the types A0 and A3 show sixfold

symmetry (Figs 3. and 4) while the rest are only threefold

symmetric (Figs. 5 and 6). Layers �AA1 and �AA2 are the inversions

of A1 and A2, respectively. The whole structure has point

symmetry �33m around the origin.

Collapsing the layers onto the basal plane (xy) produces

the final two-dimensional projection (Fig. 7). It has only

sixfold symmetry. However, it does contain twelvefold

subsets of points and, moreover, the dominant motif is a

dodecagon.
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Figure 5
Threefold symmetric layer A1.

Figure 6
Threefold symmetric layer A2.

Figure 3
Sixfold symmetric layer A0.

Figure 4
Sixfold symmetric layer A3.



5. Dodecagonal structure

We start with the root lattice D4, alias the four-dimensional

checkerboard lattice, better known as the four-dimensional

(both body- and face-) centered cubic lattice (Baake et al.,

1991; Conway & Sloane, 1999). This lattice is interesting by

itself, being the densest and most symmetric of all four-

dimensional lattices. Its symmetries include the rotations 1, 2,

3, 4, 6, 8 and 12. Every lattice point has 24 nearest neighbors.

The latter form a 24-cell, alias a polytope {3,4,3} (cf. Coxeter,

1973). Since this is self-dual, the Voronoi domain (also known

as the Wigner–Seitz cell or symmetric unit cell) around a

lattice point is a 24-cell as well. However, in the same three-

dimensional projection, the images of these two 24-cells turn

out to be different. We consider a central domain C formed by

the origin and its 24 nearest neighbors. The symmetry of C3,

the three-dimensional projection of the central domain C is

mmm. The projection of D4 onto three dimensions is

constrained by the requirement that the second two-dimen-

sional projection of C be a regular dodecagon centered around

the origin (Coxeter, 1973). Thus, as a result, the three-

dimensional projection of D4 turns out to be a hybrid structure

that is quasiperiodic in one direction and periodic in the plane

perpendicular to it. The second cut and projection then yields

a two-dimensional dodecagonal pattern.

The root lattice D4 is defined by

D4 :¼ ½x1; x2; x3; x4
� 2 Z4 : x1

þ x2
þ x3
þ x4
2 2Z

� �
: ð7Þ

In other words, the lattice points are integral multiples of

h1100i.

We choose the four-dimensional orthonormal basis as

R3
jj :

e1 ¼
a

2
;

a

2
; 0;

b

21=2

� �
;

e2 ¼
a

2
;�

a

2
;

b

21=2
; 0

� �
;

e3 ¼
b

21=2
; 0;�

a

2
;�

a

2

� �
;

8>>>>>>><
>>>>>>>:

R1
? : e4 ¼ 0;

b

21=2
;

a

2
;�

a

2

� �
;

ð8Þ

where

a2 ¼ 1þ
1

31=2
; b2 ¼ 1�

1

31=2
;

a

b
¼

cosð�=3Þ

cosð5�=12Þ
¼ ð2þ 31=2Þ1=2 ¼ 1:931 851 6 . . . ;

ð9Þ

corresponding to the twelvefold symmetry.

The window is either the half-open interval

W :¼ �
a

2
þ

b

21=2

	 

;þ

a

2
þ

b

21=2

	 
	 �
� R1

? ð10Þ

or

W0 :¼ �
a

2
þ

b

21=2

	 

;þ

a

2
þ

b

21=2

	 
� 

� R1

?: ð100Þ

The projection into three dimensions results in a layer struc-

ture that is best represented in transformed coordinates:
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Figure 7
Projection of all layers onto the basal plane.

Figure 9
Top or bottom layer ðz ¼ �1Þ.

Figure 8
Equatorial layer ðz ¼ 0Þ.



R3
jj :

e01 ¼
b

21=2
; 0; 0;

a

21=2

� �
;

e02 ¼ 0;
a2 þ b2

2

	 
1=2

; 0; 0

" #
;

e03 ¼ 0; 0;
a2 þ b2

2

	 
1=2

; 0

" #
;

8>>>>>>>>><
>>>>>>>>>:

R1
? : e04 ¼ �

a

21=2
; 0; 0;

b

21=2

� �
:

ð11Þ

The structure is quasiperiodic in one direction, x, along e01,

with quasiperiods b ¼ ð1� 1=31=2Þ1=2 and 31=2b ¼ ð3� 31=2Þ1=2.

It is periodic in the perpendicular plane (yz) spanned by e02
and e03 with y period 21=2 and z period 2. Strictly speaking, two

kinds of layers alternate: one contains the equatorial section of

C3, the three-dimensional projection of the central unit cell C,

the other the top (or bottom) face (Figs. 8 and 9). They are, of

course, indistinguishable (cf. Baake, 1999).

A second cut and orthogonal projection along the direction

of e3 produces the final two-dimensional dodecagonal struc-

ture. Fig. 10 shows the projection of the first three shells

around the origin of D4 upon the basal plane. The points are

labeled by their four-dimensional Cartesian coordinates. The

four-dimensional nearest-neighbor shell is a 24-cell. Its

vertices are numbered 01 through 24. Fig. 11 shows how the

skew layers project onto the final twelvefold basal plane.

6. ‘Straightforward’ pentagonal/decagonal structure

In the original cut-and-project approach to the Penrose tiling

and its generalizations, the five-dimensional simple cubic

lattice Z5 was projected onto a suitable plane R2 as parallel

(physical) space while the window was in its complementary

three-space R3 [cf. Gähler & Rhyner (1986) or Senechal

(1995)]. Here we reverse the roles. We focus on the structure

in the parallel three-space R3
j j. The convex hull of C3, the

three-dimensional projection of the five-dimensional central

unit cell C, is a rhombic icosahedron; apart from that, C3

contains ten inner points. Although the projection from five
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Figure 10
Final two-dimensional twelvefold structure. Projection of the first three
shells. Points are labeled by their four-dimensional coordinates.

Figure 11
Skew layers projected onto the twelvefold basal plane.

Figure 12
Window for ‘straightforward’ decagonal structure. The yellow points refer
to lattice points, whose projections are located inside the acceptance
domain (grey), whereas the green points indicate discarded lattice points.



dimensions is not minimal (Baake et al., 1990), it appears to be

the most convenient and transparent one.

The five-dimensional simple cubic lattice will be repre-

sented by ð2Zþ 1Þ5 Hence, the central unit cell C is spanned

by the vectors h11111i.

We choose as our orthonormal base the vectors

R1
0 : e0 ¼

1

51=2
11111½ �;

R2
jj :

e1 ¼
2

5

	 
1=2

1cCCc½ �;

e2 ¼
2

5

	 
1=2

0sS �SS�ss
� �

;

8>>><
>>>:

R2
? :

e3 ¼
2

5

	 
1=2

1CccC½ �;

e4 ¼
2

5

	 
1=2

0S�sss �SS
� �

;

8>>><
>>>:

ð12Þ

where

c :¼ cos
2�

5
¼
��1

2
; s :¼ sin

2�

5
¼
ð2þ �Þ1=2

2
;

C :¼ cos
4�

5
¼ �

�

2
; S :¼ sin

4�

5
¼
ð3� �Þ1=2

2
; ð13Þ

�cc :¼ �c; �CC :¼ �C; �ss :¼ �s; �SS :¼ �S;

and, as usual,

� :¼
1þ 51=2

2
ð14Þ

is the golden mean.

In this representation, the standard base becomes

10000½ � !
2

5

	 
1=2
1

21=2
; 1; 0; 1; 0

� �
;

01000½ � !
2

5

	 
1=2
1

21=2
; c; s; C; S

� �
;

00100½ � !
2

5

	 
1=2
1

21=2
; C; S; c; �ss

� �
;

00010½ � !
2

5

	 
1=2
1

21=2
; C; �SS; c; s

� �
;

00001½ � !
2

5

	 
1=2
1

21=2
; c; �ss; C; �SS

� �
:

ð15Þ

The window W is the two-dimensional projection of the

central unit cell C onto the perpendicular space R2
?; it is, of

course, a decagon (Fig. 12).

The cut-and-project procedure into the three-dimensional

space R3
j j ¼ R1

0 � R2
j j produces a layer structure. It is quasi-

periodic in the (12) plane, alias R2
j j, and periodic in its

perpendicular direction 0, alias R1
0. The respective quasi-

periods are 1 and �, the period is 2� 51=2. The layer spacing is

2=51=2. The point symmetry, strictly speaking, around the

origin is �55m. It is, however, slightly broken. Certain points are

absent since their projections into the perpendicular space fall

outside the window. Their projections into parallel space R2
j j

would be too close to some other point. This phenomenon is

well known in quasiperiodic structures. At any rate, of course,

the symmetry must be understood in a generalized sense,

namely that of indistinguishability.

We wish to point out that this structure has been put

forward earlier in a different context by Lück (1987).

A second cut and orthogonal projection in the direction 0

produces, as expected, a two-dimensional quasiperiodic

decagonal structure. This structure is, of course, the product of

collapsing all layers onto a single plane. Figs. 13 through 16

show central patches of the layers �AA5 ðz ¼ �51=2Þ through
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Figure 14
Fivefold layers A3 ðz ¼ þ3=51=2Þ and �AA3 ðz ¼ �3=51=2Þ.

Figure 13
Tenfold layers A5 ðz ¼ þ51=2Þ and �AA5 ðz ¼ �51=2Þ.

Figure 15
Fivefold layers A1 ðz ¼ þ1=51=2Þ and �AA1 ðz ¼ �1=51=2Þ.



A5 ðz ¼ þ51=2Þ as well as all layers collapsed onto a single

plane. Again, layer �AAi is the inversion of layer Ai (up to

indistinguishability). Layers A1, �AA1, A3 and �AA3 are fivefold,

while layer A5 is tenfold being its own inversion: A5 	
�AA5.

7. ‘Minimal’ pentagonal/decagonal structure –
monoclinic variant

To construct a fivefold or tenfold pattern, it is not necessary to

start from five dimensions; four suffice (Baake et al., 1990).

Here we present the ‘minimal’ three-dimensional structure

with fivefold (geneneralized) point symmetry which comes in

two variants.

We start with the root lattice A4, conventionally and

conveniently represented using five coordinates:

A4 :¼ ½x0; x1; x2; x3; x4� 2 Z5 : x0 þ x1 þ x2 þ x3 þ x4 ¼ 0
� �

:

ð16Þ

The five-dimensional orthonormal base and the standard unit

vectors are again given by equations (11) through (14). We

consider a four-dimensional central domain C (rather than a

unit cell) spanned by the vectors h 1�11000 i. It includes the

origin and its 20 nearest neighbors.

The lattice lies entirely in the four-dimensional space

R4 ¼ R2
j j � R2

? orthogonal to R1
0. This time we choose

R3
j j ¼ ð123Þ spanned by e1; e2; e3 as parallel space and the axis

4 along e4 as perpendicular space R1
?.

The window is either the half-open interval

W :¼ �
8

5

	 
1=2

s;þ
8

5

	 
1=2

s

 #
� R1

? ð17Þ

or

W 0 :¼ �
8

5

	 
1=2

s;þ
8

5

	 
1=2

s

" !
� R1

?: ð170Þ

The cut and projection into three dimensions produces a

monoclinic hybrid structure. The direction 2 turns out to be

quasiperiodic; it will hence be renamed x. In the perpendicular

(13) plane, now renamed (yz), the structure is periodic. It is

oblique with an angle � ¼ arccosð1=31=2Þ ¼ 65� 540 18:57 . . .00.
There are two kinds of layers: an equatorial layer at z ¼ 0 and
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Figure 16
The two-dimensional structure – all layers collapsed.

Figure 18
Top or bottom layer [z ¼ �ð5=6Þ1=2].

Figure 17
Equatorial layer ðz ¼ 0Þ.



a top (or bottom) layer at z ¼ ð5=6Þ1=2, which are physically

indistinguishable. Those layers are shown in Figs. 17 and 18.

Note that some points at the border of these oblique patches

are missing due to limited computational resources. But the

periods are clearly observable, which are best represented by

the repeat vectors. These are ½2�1100�11� and ½20�11�110�; both are in

the (yz) plane and of three-dimensional length 61=2. The

quasiperiods are ½001�110�, of three-dimensional length

ð8=5Þ1=2s, and ½0100�11�, of three-dimensional length ð8=5Þ1=2S;

their ratio is s=S ¼ �, as expected. Thus, the points along x

form Fibonacci chains.

The second cut and projection produces a two-dimensional

point set possessing fivefold symmetry (Baake et al., 1990). It is

worth noting that the structure is associated with the number

field Qð21=2; 31=2; 51=2Þ, that is, with the quadratic irrationals

characteristic of all known quasicrystals: pentagonal and

decagonal, including icosahedral, as well as octagonal and

dodecagonal.

8. ‘Minimal’ pentagonal/decagonal structure –
tetragonal variant

In this instance, we choose R3
j j ¼ (124) spanned by e1; e2; e4

as parallel space and the axis 3 along e3 as perpendicular space

R1
?.

The window is either the half-open interval

W : ¼
2

5

	 
1=2

ðC � cÞ;
2

5

	 
1=2

ðc� CÞ

 #

¼ �
1

21=2
;þ

1

21=2

	 �
� R1

? ð18Þ

or

W 0 : ¼
2

5

	 
1=2

ðC � cÞ;
2

5

	 
1=2

ðc� CÞ

" !

¼ �
1

21=2
;þ

1

21=2

� 

� R1

?: ð180Þ

The cut and projection into three dimensions produces a

tetragonal hybrid structure. It is in some sense dual to the

monoclinic variant; namely, the periods and quasiperiods are

interchanged. Now the direction 1 turns out to be quasi-

periodic; it will hence be renamed x. In the perpendicular (24)

plane, now renamed (yz), the structure is periodic. The periods

are ½001�110� and ½0100�11�, both of three-dimensional length 21=2.

They are mutually orthogonal both in four dimensions and in

three dimensions. The quasiperiods are ½2�1100�11�, of three-

dimensional length ð8=5Þ1=2ð1� cÞ, and ½20�11�110�, of three-

dimensional length ð8=5Þ1=2ð1� CÞ; their ratio is

ð1� CÞ=ð1� cÞ ¼ �2 ¼ � þ 1. Thus, the points along x again

form Fibonacci chains. There are again two indistinguishable

layers at z ¼ 0 and z ¼ 1=21=2, as shown in Figs. 19 and 20

(same remarks as for Figs. 17 and 18). The second cut and

projection produces, of course, the same two-dimensional

point set as that derived from the monoclinic variant.

9. Conclusions

We have put forward a variant of the cut-and-project method

by performing it in two stages, starting from a periodic

structure in a space of higher dimension (D > 3) through

three-dimensional space eventually to arrive at a plane

quasiperiodic structure. Our purpose was to construct struc-

tures in which the periodic dimensions are intrinsically

connected with the quasiperiodic ones. We have applied the

method to the known instances of ‘two-dimensional’ quasi-

crystals: pentagonal/decagonal, octagonal and dodecagonal.

Our results may be useful for the interpretation of the latter as

well as of modulated structures. The octagonal case, while

hardly realistic, may serve well as a simple model for phasons.

Apart from that, the method has some intrinsic merits for the

mathematics of quasiperiodic structures. It can be directly

applied to other symmetries. The starting and the intermediate

dimension may be easily changed and the number of stages

may be increased.
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Figure 19
Equatorial layer ðz ¼ 0Þ.

Figure 20
Top or bottom layer ðz ¼ �1=21=2Þ.
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